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A GLOBALLY AND SUPERLINEARLY CONVERGENT ALGORITHM FOR
CONVEX QUADRATIC PROGRAMS WITH SIMPLE BOUNDS*

THOMAS F. COLEMAN! anD LAURIE A. HULBERT?

Abstract. A globally and superlinearly convergent algorithm for solving convex quadratic programs with
simple bounds is presented. The algorithm is developed using a new formulation of the problem: the min-
imization of an unconstrained piecewise quadratic function that has the same optimality conditions as the
original problem. The major work at each iteration is the Cholesky factorization of a positive definite matrix
with the size and structure of the Hessian of the quadratic. Hence, the algorithm is suitable for solving large
sparse problems and for implementation on parallel computers. The numerical results indicate that the new
approach has promise.
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1. Introduction. In this paper, we present a new algorithm for solving the problem

min %:vTAa: +bTz
(1)

-1<z<L1,

where A is an n x n symmetric positive definite matrix. In theory our approach can be
applied to problems with general upper and lower bounds after a simple transformation
to yield form (1). In practice this works without difficulty provided the ranges are not
extreme. When there are large ranges, numerical difficulties may prevent an accurate
solution. However, we believe that in many practical instances it is often the case that
reasonable feasibility ranges are known in advance.

Many algorithms, both finite and infinite, have been proposed for (1). Finite algo-
rithms (assuming exact arithmetic), usually involving pivoting and determination of an
“active-set,” are the most common. Recent contributions include: Bjérck [1], Coleman
and Hulbert [3], Dembo and Tulowitzki [5], Jidice and Pires [9], Lotstedt [11], Moré
and Toraldo [12], Oreborn [14], O’Leary [13], and Yang and Tolle [17].

Following Karmarkar’s [10] development of an (infinite) “interior-point” algorithm
for linear programming, there has been increased interest in infinite interior-point al-
gorithms for quadratic programs. Interior-point algorithms for quadratic programs are
typically based on affine scaling, path following or barrier functions, potential reduction,
or projection techniques and are in general simpler to implement than active-set meth-
ods because they require less data structure manipulation. For a discussion of recent
interior-point algorithms for this and other quadratic programs, see the survey paper
by Ye [19]. Some of these interior-point algorithms have polynomial time bounds,' but
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10ne can also take a finite view of such algorithms, assuming integer data, exact arithmetic, and a formal
final “rounding” to the exact solution. This view leads to a complexity analysis; €.g., is the number of steps
bounded by a polynomial in the size of the problem? This is not our concern in this paper.
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their asymptotic rates of convergence have not been studied. The affine scaling method
proposed by Ye [18] which is similar to but simpler than the polynomial algorithm of
Ye and Tse [20] and has no proven polynomial time bound, displays linear convergence
in practice. While few numerical results are available for the recent polynomial algo-
rithms, those presented by Han, Pardalos, and Ye [8] show that the performance of their
polynomial algorithm is more consistent than that of active-set algorithms.

We present a new infinite algorithm here that is not an interior-point method. In
general, infeasible iterates are generated. Our algorithm is globally and superlinearly
convergent; however, we do not claim that it has a polynomial time bound. We de-
velop our algorithm using a new formulation of the problem: the minimization of an
unconstrained piecewise quadratic function that has the same optimality conditions as
the original problem. Our algorithm has similarities to an [/, penalty function method,
and is quite similar in development to the quadratically convergent affine scaling method
for the linear l; problems of Coleman and Li [4]. The major work at each iteration of
our algorithm is the Cholesky factorization of a positive definite matrix with the size
and structure of the matrix A. Hence our algorithm is suitable for solving large sparse
problems and for implementation on parallel computers.

There are three basic ideas underlying our new approach. The major purpose of this
paper is to expose these ideas and to begin to explore their potential in constrained opti-
mization. The first idea is the observation, detailed below, that a simple transformation
changes (1) into an unconstrained minimization problem involving a piecewise quad-
ratic function f(y). This allows for the possibility of using unconstrained minimization
strategies. The second idea, discussed in §2, is that there is a well-defined unconstrained
Newton process in a neighborhood of the solution. This Newton process is defined with
respect to the optimality conditions. The third idea is the definition of a descent direc-
tion, and a piecewise line search procedure that ultimately leads to full Newton steps,
thereby ensuring superlinear convergence.

The paper is organized as follows. In the rest of this section, we present our new
formulation of the problem and introduce some notation and definitions. In §2, we de-
scribe and motivate our algorithm. We prove global convergence in §3 and superlinear
convergence in §4. Section 5 contains numerical results and a discussion of the behav-
jor of the algorithm. Finally, in §6, we discuss possible improvements and make some
concluding remarks.

1.1. Arelated problem. Consider the quadratic program (D). Letgz(z) = 12T Az+
Tz, and hence Vg (z) = Az + b. If we assume that z* satisfies Vgz(z*); # 0 for all
such that |z?| = 1, then the following conditions are sufficient to guarantee that z* is a
local minimum of (1):

feasibility: —1<z* <1,
Vg:(z*):i =0 if —l1<z}<],
first order: Vg (z*); <0  ifz; =1,
Vg (z*); >0 ifz} = -1
Now for a vector v, define the vector-valued function sign(v), where

. 1 if Vi Z 0,
sign(v); = 1 ifv; <0
- v; .
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Then letting d; = =} + sign(Vg.(z*));, and D = diag(d;), we can express the first-order
condition as

2 DVgq,(z*) =0.
Now consider the following piecewise quadratic minimization problem:

min f(y) = 39T A"y +yTA7b + |lyllx

3
= qy(¥) + llyll1,

where g, (y) = 3yTA~'y+yT A~1b. The following conditions are sufficient to guarantee

that y* is a minimum of (3) [2]: there exists a vector A* such that

ATl + A0+ ) sign(yl)ei=— D Me, —1<A <L
i3y #0 i3y =0

We can reformulate these conditions into the following equivalent conditions: there ex-
ists a vector A* such that

Y*(=A* +sign(y*)) =0,

0] L
A= —(A"1y* + A7), -1< X <1,

where Y* = diag(y*). Thus if we equate A\* with z* and hence y* with —Vg.(z*), then
it is apparent that (4) is equivalent to (2) plus feasibility.

This new formulation gives us a new perspective from which to approach solving (1)
and this is the view we take in this paper.

For convenience in what follows, we sometimes switch between the original variables
z and —V¢q.(z) and the new variables A and y:

®) z=2x  y=-Vg(z)

In general, we develop our algorithm and prove things about it in the A and y variables
and describe the characteristics of the quadratic programs in the = and V¢, (z) variables.

1.2. Some notation and definitions. In what follows, subscripts denote vector and
matrix components and superscripts denote iteration number. We omit superscripts
whenever the iteration number is clear or irrelevant. For any vector v, the matrix diag(v)
is a diagonal matrix whose diagonal elements are the components of v. If V is a matrix,
let |V| be the matrix whose ijth element is |v;;].

For any point y with y; # 0 for all 4, V f(y) is defined and Vf(y) = A~y + A~ b+
sign(y). Given y and s, define a breakpoint of f along s to be any a where f(y + as) is
nondifferentiable, i.e., (y + as); = 0 for some i. For a > 0 define S(a, y, s) to be the set
of indices to breakpoints along s that occur at or before q, i.e.,

(6) S(a’ Y, S) = {'L | 0< _yi/si < a}-
Define o(a, y, s) = sign(y + as). For any direction s, define

9(a,y,8) = nl_i}g+ Vf(y+ns).
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Notice that if (y + as); # 0 for all 4, then g(a,y,8) = Vf(y + as). For conciseness,
we write g(a), S(a), and () when y and s are clear from context, and, in particular,
g*(a), S*(a), and o*(a) when y = y* and s = s*. Also, since we use it so frequently,
we let o denote o(0), i.e., o = sign(y).

A point satisfying |z;| = 1 and Vg.(z); = 0 for some i is called a degenerate point.
We call a quadratic program of the form in (1) nondegenerate on a closed bounded set C
if at every point = € C either |z;| # 1 or Vgz(z); # 0.

The nondegeneracy assumption. Given a closed bounded set C, the nondegeneracy
assumption, with respect to C, is that at every point z € C either |z;| # 10r Vgz(z); # 0.

2. The algorithm. Problem (3) is an unconstrained optimization problem; there-
fore, a descent direction algorithm can be developed without regard to maintaining fea-
sibility. On the other hand, f(y) is not everywhere differentiable due to the I;-term
llyll. The challenge is to deal with this piecewise nature of f. In response, our algo-
rithm restricts iterates to differentiable points; i.e., y¥ # 0 for all iterations k and compo-
nents i.

2.1. The search direction. From (4), we see that a solution? to (3) is also a zero of

@) F(y) =Y (A 'y + A~1b+sign(y)) = 0.

Although F is not differentiable whenever y; = 0 for some 4, at all other points F(y) =
YV f(y) and is twice continuously differentiable. This naturally suggests using Newton’s
method, at least in a neighborhood of y*. Where it is defined, the Jacobian of F(y) is

J(y) = YA™! + diag(V£(»)),

and thus the Newton step for F at y is

@® sy = —(YA™! +diag(VF(¥))) 'Y VF()-

The following lemma shows that in a neighborhood of the solution of (3), the Newton
step for F is a descent direction for f(y). This is not an obvious result since the Newton
process does not come directly from f but from the nonlinear system of equations (7).
The idea behind the proof is that V f(y):/y; either converges to zero or to (positive)
infinity as y — y*. Specifically, if y} # 0, then V f(y):/y: converges to 0; if y; = O,
then V f(y):/y: converges to +oco. Consequently, the matrix (A~! + diag(V f(x))/Y) is
positive definite in a neighborhood of y*; therefore, by (8), sy willbe a descent direction.

LEMMA 2.1. Assume nondegeneracy of (1) at the solution. Then, there exists ¢ > 0
such that whenever y; # 0 for all i and ||y — y*|| < €, we have —sLV f(y) > 0.

Proof. Rewriting (8) as

) sv = —(A7! + Y~ 1diag(Vf(¥))) 'V (¥),

we can see that if Vf(y)i/y; > —(1/||All2) for all ¢, where (1/||Al|2) is the smallest
eigenvalue of A~1, then —s}, Vf(y) > 0. Set

1 . xdg ydg )
€ = — min ) )
2 (||A”1||2 | All2]lA=*{l2

2Recall; We have assumed A is symmetric positive definite, so A~ exists.
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where

dg= min |y’| and zdg= min (1 - |z}]).
ydg = min Ivil 9= min, ( |z31)

Assume ||y — y*||2 < eand y; # 0 for all 4.
If y; # 0 then sign(y*); = sign(y); by our choice of ¢, so

IVF(w)il = V()i — VF(y*)il
= |z; — zj|
< llz—=z*|l2
< [IA7l2lly* = yll2
< ||lA7Yz €
< ydg/(2||All2)-

Since
lys| > ydg — € > ydg/2,
we have
V£(y): 1
< .
’ Yi ||A||2

Hence V f(y)i/yi > —(1/||All2) if y; # 0.
If y? = O then

||zl — 23] | < | — 27| < |A7 |2 € < zdg/2,
so
|zi| < |zi| + zdg/2 < 1 — zdg + zdg/2 < 1.

And since Vf(y); = (i — z;), we conclude that o; = sign(Vf(y)):; and hence
V£(y)i/y: > 0. Thus Vf(y):/y: > —(1/||Al|2) for all ¢, so we are done. 0

Of course, the Newton step may not be a descent direction far from the solution.
Therefore, we consider a “modified” Newton step. Specifically, we choose a step of the
form

(10) s=—(Y|A"' + R)71Y|Vf(y),

where R is a diagonal matrix satisfying r;; > 0 for all i. Thus we have the following
lemma.

LEMMA 2.2. For any diagonal matrix R with positive diagonal entries, the search direc-
tion s, defined by (10), is a descent direction, i.e., —sT V f(y) > O.

In order for s to approach the Newton step, we choose R = diag(r), where

(11) ri=0+(1-06)[VFf(y)l,

6 > 0, and 6 = 0 only at the optimal solution y*. We define 7 to quantify the nonopti-
mality of the current point,

n=pl|lYVi)l:+ ngx((lx\il -1),0),
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where p = 1/||YVf(y)ll1, evaluated at a “typical” value of y. Our choice of a “typical”
value of y is —(A - sign(—b) + b). Then we choose 6 to be between 0 and some small
constant c¢; € (0, 1) by setting

6 = c11/(0.99 + 7).

Notice that either Vf(y*); = 0 or sign(Vf(y*)); = oi, so R, as defined by (11), ap-
proaches X - diag(V f(y)), where % =diag(o;), thus ensuring that the Newton step is
approached. We can prove the following useful lemma about R.
LEMMA 2.3. If r is defined by (11), then foralli,r; =0 <= 6 =0 and Vf(y)i =0.
Proof. By definition, r; = 6+ (1 - 0)|Vf (y)i|. Since 0 < 6 < 1, each term is greater
than or equal to zero. Thus r; = 0 if and only if 6 = 0 and Vf(y): =0. ]

2.2. The line search. The basic iteration in our overall procedure has the form
(12) yr+l = gk + aksk,

where oF is the step length, determined after computing the search direction sk. Be-
fore describing this line search procedure, we introduce some notation and describe the
geometry of the line search (we drop the superscript k in this discussion since we are
referring to a single iteration of the overall procedure).

Define the function f, ,(v) to be the restriction of the function f to the line through
y along s, i.e.,

fy,s(y) = f(y + Vs)'

Thus f, ,(v) is continuous, convex, and piecewise quadratic. Define 3 to be the vector
of positive values of v where f, ,(v) is nondifferentiable, i.e.,

5 = { —yi/s; if sign(y;) = —sign(s:),

o0 otherwise.

On the interval between any two adjacent breakpoints, say 3; and §;, fy,s(v) is a quad-
ratic. (The breakpoints 3; and j; are adjacent, with 3; < B;, if there does not exist an
index k such that 8; < Bx < B;.) Label this quadratic f(i,5)(v). Hence the minimum of
fy,s(v)occurs either ata breakpoint or at the minimum of one of the quadratic segments
f(i,j)(v). Furthermore, f('m.)(u) = sTg(v,y,8) and f; ,,(v) = sT A=1s. Thus on each in-
terval, the function f, ,(v)isaline with slope sT A~ 1s, i.e., the curvature of f is the same
for all intervals. For any v, let 3; and j3; be the two adjacent breakpoints surrounding
v (i.e., B is the largest breakpoint equal to or to the left of v, B; is the smallest break-
point strictly to the right of v), and define () to be the step from v to the minimum of
f(‘i,j) (1/), i.e.,

For notational convenience, define §p = 0 and v; = ~(B;). Figures 1 and 2 illustrate
these quantities where we assume Bo < B1 < Pa.

In the next lemma, we show that +y is monotonically decreasing. This implies that as
we move along the direction s during the line search, the distance to the optimal point
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F1G. 1. The quadratic functions that comprise the piecewise quadratic fy,s (V).
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FIG. 2. The function f, ,(v).

of the current quadratic is less than the distance to the optimal points of the previously
encountered quadratics.

LEMMA 2.4. Let s be a descent direction for f at the current point. Then, the functions
—sTg(v,y, s) and y(v) are monotonically decreasing functions of v.

Proof. We have

(13) —sTg(v,y,s) = —sTg(0) — vsTA~1s — sT (o (v) — 0(0)).
But

0 if v < g,

o(v)i —o(0); = .
—20(0); otherwise.
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So

(14) o) -o) = D (F208)=2 ) |ail

i€S(v) ieS(v)

is greater than zero and is monotonically increasing as v increases. Thus, since A1
is positive definite, —sTg(v) is a monotonically decreasing function of v. Furthermore,
since

1) = 22

~ sTA™1s’

~(v) is also monotonically decreasing. 0

An algorithm to determine the optimal point along the descent direction s can now
be described. That is, we can determine the global minimizer of the piecewise quad-
ratic function as follows. First compute the vector 3, and sort it so that the sequence
Bo(1)s - - - » Bp(n) 18 increasing, where p is the appropriate permutation vector, ie.,

(15) Bo1) < Bp2) < -+ < Bp(n)-

Ties can be broken arbitrarily. Examine each successive interval (Bp(i)» Bp(i+1)) to de-
termine if the minimum of f, , occurs within it or at the end point Bp(;41) as follows. If
Yp(i) < Bpi+1) — By(i) then the minimum of f, s occurs at the minimum of f(,(i),p(i+1))>
50 set & = Py(i) + Yp(i)- Otherwise, if —38Tg(Bp(i+1)) < 0 the minimum of f,,, occurs at
the breakpoint Bp(i+1), SO set & = Bp(i+1)-

Our line search procedure follows this description with one important modification:
in order to avoid stopping at a point of nondifferentiability,® a near-optimal point is com-
puted. Specifically, if the minimum of f, , occurs at the breakpoint By(i+1), instead of
setting a= ﬂp(i+1)’ seta = :Bp(i) + T(ﬂp(i+1) - ,Bp(-,;)), where 7 = min(cz, 1- 0/01), and
0 < ¢ < 1. This guarantees that f(y) is differentiable at the new point; moreover, the
distance to the optimal point along the line goes to zero with 6.

0

y=y

p = 1/|YVf(y)||1 evaluated at a “typical” value of y
while not optimal do

A=—(A"y+A'b)
V£(y) = - +sign(y)
n=plY Vi@l + 3 mex((Ml - 1),0)

6 =cin/(0.99+ 1)
R= (91 + (1 0)diag(VS(w)))
s=—(Y|A+R)TN(YIVS(y)
determine a by the line search described above
y=y+as

enddo

FI1G. 3. The proposed algorithm.

3By (10) the search direction s is not defined if any component of y is zero. Therefore, we avoid such
points.
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2.3. Implementation details. In this section, we describe an efficient and numeri-
cally stable way to implement our algorithm (see Fig. 3). At each iteration, our algorithm
requires the computation of a step

s=—(Y|A + R)(Y|VS(y))

and this computation is the dominant work. However, for reasons of numerical stability,
efficiency, and space we do not want to form A~!. (If A is sparse, generally A~ will
not be sparse.) Since, by Lemma 2.3, R is nonsingular if y is not optimal, we have the
following equivalent linear system of equations:

(IY]A™! + R)s = —|Y|V£(y),

(Y| +RA)A™s = —|Y|V£(y),
“3(lY| + RA)RZR¥(A71s) = —R™3(]Y|VS(y)),
(Y| + REART)R™#(A7's) = —R™¥(|Y|V{(y)).

Thus if we solve the symmetric positive definite system
(16) (Y]+R¥AR%)v = ~R™3([Y|Vf(y)),

then we can easily compute s = AR!/2y. Furthermore, this approach is well suited to
sparse problems, since the structure of the matrix in (16) is always the same as that of
A, and hence one data structure can be used to store all necessary Cholesky factors.
(Note that a similar type of scaling can be used to improve the conditioning of the linear
systems to be solved in many other interior-point quadratic programs. See Ye [19] for
the general form of these systems.)

When performing the line search, we must compute (s*)T g* (%) at each breakpoint
Bk that we cross. From (13) and (14), we have

a7 —()Tg"(B) = =(s5)Tg*(0) = B ()TA (M + Y (20Fsh).
i€Sk(B5)

(Recall that S*¥(a) = {i | 0 < Bf < a}.) Hence we can efficiently obtain (s*)7 g* (%)
from (s*)Tg*(8f_,) without computing a matrix-vector product.  (Note that
(s¥)T A~1s* = (s*)T RY/2vF, where v* is given by (16).) The work of performing the line
search is therefore dominated by the sorting of the breakpoints,* which costs n - log n.

3. Global convergence. In this section, we prove that our algorithm converges to
the optimal point. We begin by proving some useful bounds.

A notational note: In all subsequent discussion in this section, vector s or s* refers
to the definition given by (10) and (11), unless otherwise noted.

LEMMA 3.1. There exists M > 0 such that for all k, ||y*|; < M.

Proof. Since s is a descent direction, the line search insures that f(y*) > f(y**?).
Thus {f(y*)} is monotonically decreasing. So we have

F@°) = ay(¥°) + 1¥%l1 = F(W*) = gy (%) + llg* 111 > gy (=) + ||v*]1.

“Even this cost could be reduced, on average, by avoiding the full sort and recursively choosing the mini-
mum breakpoint, i.e., employing a heapsort mechanism.
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Thus [|y*|l; < M, where M = [3°]l1 + ¢,(3°) — gy(=b). O

COROLLARY 3.2. ||V £(¥*)ll2, || R*||2, and ||X*||2 are bounded above.

We use this lemma to define the domain of the problem for our nondegeneracy
assumption. Let the domain C used in the nondegeneracy assumption be induced by

{ylllyllh <M +e},

where ¢ is an arbitrarily small positive constant. We need e because the proof of super-
linear convergence requires nondegeneracy on an open set.
LEMMA 3.3. ||s*||2 is bounded above.

Proof. We have
lls¥ll2 = (A" + [Y*|7* R*) 7'V £(")ll2
< AT+ VTR TNV
IVS@*)ll2
min z7 (A~} 4+ |Y*|"IR")z
llzll2=1
. IV @*)la
= min eigenvalue of (A~1)
= IVSE")lzllAll2-
Thus ||s*||2 is bounded above. |

Next we show that the function values of the sequence of iterates converge, and the
distance between iterates converges to zero.

LEMMA 3.4. The sequence { f (y*)} is bounded above and below and converges.

Proof. Since {f(y*)} is monotonically decreasing,

F&°) > @) = ) + 15l = gy (5%) 2 gy (-b).

Thus f is bounded above and below, and hence {f(¥*)} converges. 0
LEMMA 3.5. The sequence {||a*s*||2} — 0.
Proof. By definition,

JEH = o 4 oFsk.
Recalling our notation o () = sign(y* + as*) and §*(a) = {i | 0 < BF < o}, we have
F&F) - f@Y) = f@*) - FO~ + o*s*)
= _(aFs))T(A71yF + A71b) + L(aFsF)T A1 (aksk)
+lgFll — ll* + o s®
But for all i € S*¥(a),
k| — Ik + oF sk| = 21| - o sfoi(a),
and for i ¢ S*(a),

l¥| — yf + o*s¥| = —asioi(a)-
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Therefore, recalling that V f(y) = A~ly + A~1b+ sign(y),

F@h) — £ = —~(@FHTVIEF +atsh) + S (aFFTAT ks +2 Y
i€Sk(a)

Since 3 ;¢ sk (o)¥¥ | is nonnegative, and our choice of a* insures that
—(*)TVf(* +a*sF) 2 0,
we have
F@F) = FF) 2 3(aFs¥)T AT (osb).

Since A~! is positive definite, and {f(y*)} converges, then we must have
{lo*s*lz} —0. O

Up to this point, none of our results depend on the nondegeneracy assumption;
beginning with the next lemma, we will require this assumption. Now we show that under
the nondegeneracy assumption, the step s converges to zero. Using this, we can then
show that in the limit, complementary slackness is satisfied.

LEMMA 3.6. Under the nondegeneracy assumption, {||s*||2} — 0.

Proof. Suppose that {||s*||2} / 0. Then Lemma 3.5 implies that a subsequence of
{a*} converges to zero. Let &* = min(vo, 02:3:(1)) where p is the permutation vector
defined in (15). Note that p depends on the iteration k. Then o* > &* > 0 and so zero
is a limit point of {&*}. However, since g*(0) = Vf(y*) = —(A~! + |Y*|"1 R¥)(s*), we
have

_ =(sH)Tgr0) _ (sH)T(ATT 4+ |YF|TIR)(sF)
Y= (sF)TA-I(sk) — (sF)TA=1(sF)

> 1.

Thus zero must be a limit point of {35, }. From the definition of s*, we have|yf|(V f (¥*):
+ (A~1s%);) = r¥sk, so for each £,

k k. .k

gk =gk = Y _ giT;
) T TSR T VE(yR) + (A1)

for some 3. Since there are only a finite number of choices of index i, there must be a
subsequence of {ﬂ:(l)} with p(1) = j for some fixed j. Thus zero must be a limit point

of {#%}. Then since ||s*||2 is bounded above, a subsequence of {y%} must converge to
zero. If we assume that the nondegeneracy assumption holds, then the corresponding
subsequence of {r}“} does not have zero as a limit point. Hence a subsequence of it is
bounded away from zero. Since {V f(y*),} is bounded above, the corresponding subse-
quence of (A~1s*); must diverge to infinity. However, ||s*||2 is bounded above, so this
is a contradiction. Therefore we must have {||s*||2} — 0. 0

THEOREM 3.7. Under the nondegeneracy assumption, the sequence {Y*V f(y*)} — 0.

Proof. We have

Y IVE@*)llz = II(Y*] A7 + RF) s%|l2
< NAY* A7+ BE)l2lls* I
< (IY*ll2 1A 2 + 1B ll2) lls*l2-
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Since |[Y*||; and ||R*||2 are bounded above, if ||s*|2 — 0, we conclude that
(Y Vi) —0. O

The next major result is that the sequence {y*} actually converges. Before we can
prove this, we need the following two lemmas.

LEMMA 3.8. Let v € R" be such that forall i, v; = 1orv; = -1 Then the set
Z, ={y|Y(A 'y + A"'b+v) = 0} contains a finite number of distinct points.

Proof. Lety € Z, andlet J be the set of indices of the zero components of y, i.e., J =
{j | v; = 0}. Then since A~ is positive definite, the equation Y (A~ly+ A~ 'b+v) =0
uniquely defines the remaining components of y. Hence, Z, contains no more points
than there are unique subsets of the first n integers, so Z, is a finite set. 0

The next lemma is standard. See, for example, [15, Note 14.1.2, p. 478], in which
Ostrowski [16] is credited.

LEMMA 3.9. Let {y*} be any bounded sequence of points with the following two prop-
erties. The sequence {y*} has a finite number of limit points and ||[y*** — y*||2 — 0. Then
the sequence {y*} converges.

Finally we can show that the sequence of iterates produced by our algorithm con-
verges. _

THEOREM 3.10. Under the nondegeneracy assumption, the sequence {y*} converges.

Proof. Since Lemma 3.1 implies that the sequence {y*} is bounded, it must have at
least one limit point. Let § be a limit point of {y*}. Thus there is a subsequence of {v*}
that converges to . Since there are only a finite number of distinct vectors sign(y*),
there must be an infinite subsequence of this subsequence with sign(y*) = v for some
fixed v. Hence the corresponding subsequence of {Y*(A~1y* + A™'b + v)} converges
to zero, so Y (A~1§ + A~1b+v) = 0. Since there are only finitely many choices of v and
Lemma 3.8 shows that for each v the set Z, = {y | Y(A~'y + A~'b+v) = 0} is finite,
the sequence {y*} can have only finitely many limit points. Hence Lemmas 3.5 and 3.9
imply that the sequence {y*} converges. 0

The next major result is that {\*} converges to a feasible point. We prove this by
assuming the contrary and showing that the line search forbids this. First we show that if
A7 > 1, then for large enough k, the jth breakpoint will not be crossed during the line
search.

LEMMA 3.11. If |X}| < 1, then for large enough k,

sign(y¥) = —sign(s}) = sign(V£(¥");)-
If|X3| > 1, then for large enough k,

sign(y¥) = —sign(s}) = sign(Vf(y*);) = —sign(7) = —sign(X}),

and during the line search, the jth breakpoint will not be crossed.
Proof. If |\ # 1, then since Vf(y*); = —\5 + ok, we have {V f(y*);} 7 0. From
the definition of s*,

st = (@54, + (47150),)
J T;c J )

So since {(A~1s*);} — 0, for large enough k, sign(s}) = —sign(V f(@*);)-
Now suppose |A}| < 1. Then for large enough k, IA¥| < 1, and so sign(V£(y%);) =
o%, and hence sign(y¥) = —sign(s}) = sign(Vf (¥%);)-
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Next suppose |A7| > 1. Then for large enough k, we must have |A¥| > 1. Since
Vf(y*); = =Mk + 0% and |o¥| = 1, we see that for large enough k, sign(Vf(y*);) =
—sign(A¥) = —sign(A}). Hence, —sign(s¥) = sign(Vf(y*);) = —sign(\F) = —sign()}).
This says that after some iteration, the sign of s¥ will remain constant. Since by definition
y*+1 = y* + a*sk, {y*} is a monotonic sequence. Since {Vf(y*);} 7 0, Theorem 3.7
implies that {y¥} — 0. In order for this to occur, the sign of s¥ must be opposite that
of y;-‘, otherwise {y}‘} would converge to a nonzero number with the same sign as s;?.
Thus we must have sign(y}) = —sign(s¥) = —sign(}) and so the jth breakpoint cannot
be crossed in the line search. O

The next two lemmas will be used to show that if |\}| > 1, and |A]| > |A}| # 1, then
B; < B;. From this we conclude that if |\}| > 1 and BF < pF then for large enough &,
AE| > [XF] > 1.

LEMMA 3.12. If 0 < A1 < Ag, then

A1 < A2
1+ XM 1+ X

LEMMA 3.13. Assume that the nondegeneracy assumption holds. If |\}| = 1 then any
limit points of the sequence {3F} are in the set {—oo,0}. If |\}| < 1 then any limit points
of the sequence {3¥} are in the set

0"\ LM }
1+ __” 1-—- 2 .
{ =D 1+

If |\t > 1 then the limit point of the sequence {(}} is

_ ey
T+ %]

Proof. Suppose |A\;| = 1, and so using the nondegeneracy assumption, {y¥} / 0. Since

k
)
1 sf

and {s¥} — 0, the sequence {3} can have only —oo or +o0 as limit points.
If |A!] < 1, then Lemma 3.11 shows that for large enough k, sign(V f(y*);) = oF.
Letting ¥ = oFsign(\¥), we can write V f(y*); = ¥ (1 — uF|\F]). We can express 8F as

P T T T Vi) + (A1),
_ oE(IVFR)il + 650 = [VIH)D)
Vf(yk): + (A~1sk);
_ o1 — pk|NE| + 0Fuk2E])
oF(1 — pk|MF| + oF(A-1sF),)
O DE| - ob(A~1 )
1— pF\l* + o (A-TsF),

k k..k
ﬂk _ 7Y o;Ts
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Since {(A~1s%);} — 0, {6¥} — 6*,and {|A¥[} — |A}| < 1, the sequence {B%} can have
as limit points only

el o

1+ 1 - s
-] T+ ]

If |A}| > 1, then Lemma 3.11 shows that for large enough k, sign(A\¥) = —o¥. Thus
pk = —1. So the limit point of the sequence {BF}is
_ o]

1+ A7

Now we show that if |A}| > 1, then for large enough k, the line search will cause the
jth breakpoint to be crossed.

LEMMA 3.14. Assume that the nondegeneracy assumption holds and that A5l > 1.
Then for large enough k,

1

(18) —(s¥)Tg*(8f) > 0.

Proof. From (17), we have
19 —@VFE) = —(TFO-FEHTATE 3 Golsl).
ieSk(Bk)

Using the fact that —(s¥)Tg*(0) = —(s*)TVf(¥*) = (s¥)T (A1 4 |Y*|"1RF)(sF), we
can rewrite the right-hand side of (19) as
(20) (1 - B5)(s*)T AT (%) + ()T (IY*| T R)(%) + > (20Fsh).

i€S*(B})

For large enough k, Lemma 3.13 shows that ﬁ;‘ < 1, so the first term in (20) is greater
than zero. We can express the second and third terms as

Z rflsf‘l_z k Z ¥ k2

i€Sk(Bk) igS*(B5)

The second sum in (21) is obviously greater than zero. Thus the only thing remaining to
show is that the first sum in (21) is greater than zero. We can simplify the summand in
the first sum as follows:

rk|sk
@) ( ;;5,' - 2) (o] = (V5 (55)s + (A~2%)s] — 2|5k,

For large enough k, Lemmas 3.12 and 3.13 show that if i € S*(B%) then [A¥| > |N¥| > 1.
Hence Lemma 3.11 implies that |V f(y*);| = (1 + |A¥]) > 2. Since {(A~1s*)} — 0, for
large enough k,

(VF(@@*)i + (A71s%):| —2) > 0.

Therefore, for large enough k, each term in the first sum in (21) is greater than zero, and
the proof is complete. 0
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Now we can prove that ) is feasible and derive some corollaries that we will use to
prove superlinear convergence and to show that the step length converges to unity.

THEOREM 3.15. Under the nondegeneracy assumption, |\;| < 1 for all i.

Proof. Suppose |\;| > 1 for some i. Lemma 3.11 shows that for large enough £, the
ith breakpoint cannot be crossed in the line search. Lemma 3.14 shows that for large
enough k,

—(s*)Tg*(BF) > 0,

and so our line search would cause the ith breakpoint to be crossed. These are contra-
dictory statements and hence for all 4, [A}| < 1. O

COROLLARY 3.16. Under the nondegeneracy assumption, {6*} — 0.

COROLLARY 3.17. Under the nondegeneracy assumption, if y; = 0 then 3; = 1, and
if y? # 0 then 3} = too.

Proof. The first statement follows immediately from Lemma 3.13, the definition
of 8, and Theorems 3.7 and 3.15. The second statement follows from Theorem 3.7 and
Lemma 3.13. O

4. Superlinear convergence. In this section we establish that under the nondegen-
eracy assumption, the sequence {y*} produced by our algorithm converges to y* super-
linearly. Consider the following finite set 7 of functions

F,(y) = Y(A 'y + Ao +v),
where v € R" is defined as

” +lor —1 ifyf =0,
P =
sign(y?) otherwise.

Each function F,, is twice continuously differentiable and, furthermore, F (y*) = 0.

The Jacobian of F,(v) is J.(y) = YA™! + G, (y), where G, (y) = diag(A~'y +
A~1b + v). Note that the nondegeneracy assumption implies that J, (y) is nonsingular.
The Newton step at y* for finding a zero of F, is

(Y*A™ + G, (y%)sk = —F.(v%).

Lemma 3.11 shows that for large enough k, F,x € F, and hence our search direction sk
satisfies

(Y*A™ + Bk R*)s* = —Fx (3"),

where £F = diag(c*). Thus s* is very similar to a Newton step at y* and, in fact, we
will show that s* converges to a Newton step. But first we state a more general result
about superlinear convergence of a family of functions. This result follows easily from
Theorem 3.4 in Dennis and Moré [6].

THEOREM 4.1. Let F = {F, : R® — R"} be a finite set of functions satisfying the
following assumptions:

e Each F, is continuously differentiable in an open convex set C.

o There is a y* in C such that F, (y*) = 0 and V F, (y*) is nonsingular.

e There is a constant k such that forall F,, € F,

IVE.(y) = VE ()l < &lly — 37|l

foryeC.
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Let {W*} in L(IR™) be a sequence of nonsingular matrices. Suppose that for some y°
in C the sequence

y 1l = of — (W*) " E (%), k=0,1,...,

remains in C and converges to y*, and that y* # y* for k > 0. Then, if
(23) {IW* - VE. )} — 0,

{y*} converges superlinearly to y*.
Now we show that our set of functions and the sequence generated by our algorithm
satisfy the hypotheses of Theorem 4.1. For the convex open set, we take the region

C={ylllyllh <M +e},

where M is as in Lemma 3.1 and e is an arbitrarily small positive constant. We have seen
that the first two assumptions hold. The next lemma shows that the third one holds.
LEMMA 4.2. There is a constant « such that for all F,, € F,

IVE.(y) = VE, ") < slly — vl

fory e C.
Proof. Set § = max(M + ¢, ||b||1). We have

IVE,(y) - VE@)lh = [Y(A 'y + A7 +0) =Y (A7'y" + A7b+ )l
<Y =Y* A7yl + 1Y A7 lly - o"l
+ Y =Y*| |47 + vl
< @A s+ wlh) lly - vl
= K ly — ¥,
where k = 3 ||A~1|l1 6 + n. Thus we have the desired result. O
Before we can prove that (23) holds, we must show that the step length converges to

one. The next lemma shows that for any fixed o > 1, for large enough k, a step of length
a takes us beyond the minimum of f, ;.

LEMMA 4.3. Assume that the nondegeneracy assumption holds and that o > 1. Then
for large enough k,

—(5*)Tg(a, y*, 5%)

’yk(a) = TA=L(s) < 0.
Proof. From (13) and (14), we have
(24)
¥ (a) = (_sm_ﬁlff(—s—kj (“(sk)Tgk(O) —o(sF)TAI(s¥) - ieszk(a)(—zafdp)) .

Using the fact that —(s%)Tg*(0) = —(s¥)TVf(y*) = (s¥)T(A7! + |Y*|-1R¥)(s*), we
can rewrite (24) as

@)= (1-a)+

(5T (Y RY) () —20ks}
A e A
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Reorganizing, we get
) (1 rhjsh] 5 ko (sh)?
TE@=u )+,~e§@( S 2) AT 2 AT
sk
= -+ X (VW + (4R - D s

i€Sk(a)

+ Z i (s¥)?

k K\T A-1(ck)"
oty W T4 (&)

If i € S¥(a), Theorem 3.15 and our nondegeneracy assumption show that for large
enough k, |\¥| < 1, and hence |Vf(y*)i| = |(oF — A¥)| < 2. Furthermore, since
{(A~1s*)} — 0, for large enough k,

(IVF@*): + (A~ 1s%):] - 2) < 0.
Thus, we can bound v* (<) as follows:

s

luF| (s¥)T A~ (s*)

@) <l-a)+ )

igSk(a)
k
<-a)+ 3 (k)( 1 )((sf)?)
o) |y¥|/ \ min eigenvalue of A-1 ) \ ||s¥||2
rk
<a-o)+iAl Y o
igSk(a) '7t

For large enough k, if i ¢ S*(c), theny? /4 0and hence r¥ — 0. Thus Y igst(a) (r¥/lyk)
converges to zero as k — 0o. So, since a > 1, for large enough k, v*(a) < 0. O

THEOREM 4.4. Under the nondegeneracy assumption, {c*} — 1.

Proof. Corollary 3.17 implies that {ﬂl’;(l)} — lor {,81’;(1)} — oo and Corollary 3.16
implies that {6¥} — 0. By definition, o* > (1 — 6* /Cz)ﬁz(l), hence {a} cannot have a
limit point that is less than 1. Furthermore, the properties of the line search, combined
with Lemma 4.3, show that for any e there exists k(e), such that for k > k(e), o* cannot
be greater than 1 + e. Thus {a*} — 1. 0

The last thing necessary to prove superlinear convergence is to show that (23) holds
and we show this in the next lemma.

LEMMA 4.5. Let

wk = ik(Y”A‘l + =*RF).
a
Then, under the nondegeneracy assumption, |W* — VF,x(y*)|2 — 0.

Proof. Notice that G« (y*) = diag(V f(y*)). From the definitions of W*, VF, . (y*),
and R¥, we have

[W* = VEor(y*)ll2 = 2

1
S (FAT 4 TkRF) — (Y*A7 + G,k(y*))l
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+

(&)l

ek
+—5 154 (1 = 1Gox (")l

2

L (5414 Gon 1)) ~ G )

where T'* = diag(sign(V f (*))). Theorem 4.4 shows that {o*} — 1, and Corollary 3.16
shows that {¢%} — 0. Furthermore, since {y*} — {y*} and |V f (v*)|l2 is bounded
above, the first and third terms on the right-hand side of the above inequality converge
to zero. Hence it suffices to show that

(25)

L (@46 4) - G |

—0
2

to obtain the desired result. But (25) follows immediately from Lemmas 3.7 and
3.11. 0

Thus the conditions of Theorem 4.1 hold and we have the following theorem.

THEOREM 4.6. Under the nondegeneracy assumption, the sequence {y*} generated by
our algorithm converges superlinearly to y*.

Our numerical experiments suggest that our algorithm may indeed be quadratically
convergent in the nondegenerate case; however, we have not been able to establish this
yet. It is easy to see what needs to be proved. Under the assumptions of Theorem 4.1, if

(26) IW* — VEx (")l = O(lly" - y* 1),

then {y*} converges quadratically to y*. It is straightforward to show that Yk -Y*|| =
O(lv* — u° 1), IZTFG o (%) — Gox(u*)|l = O(lly* — y*l), and 6% = O(lly* — y*1)-
Hence from the proof of Lemma 4.5 it suffices to show that 1 — a* = O(||ly* —y*||)- The
rate at which o* — 1 depends on the rates at which v* decreases and Bk — 1.

5. Numerical results.

5.1. The test problems. We generate test problems of the form (1) in the manner
suggested by Moré and Toraldo [12]. They describe how to generate problems, varying
four parameters: n, the number of variables; lend, the logarithm base 10 of the condition
number of A; nb, the number of variables at their bound at the solution z*; and ymag,
the magnitude of the nonzero components of y*.

To generate a test problem whose solution has certain properties, choose A to have
the desired properties, generate z* and y* = Vgz (z*) such that either z} is at a bound
(i.e., |z¥] = 1) or y} = 0, but not both, and then set b= —Az* + y*. In particular, set

A=QDQ whereQ=1- —g—zny,
llyll
D is a diagonal matrix with

di; = loki-lcnd’ k; = )

and the components of y are randomly generated in the interval (—1,1). Thus A is a
positive definite matrix with condition number 1Qtend,

Given nb, the number of variables at bounds at the solution, generate z* as follows.
Let B be the index set identifying the components of y that are zero at the solution:
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i € B < y; = 0. Let B° be the complementary set. First choose B and B¢ by
generating a random number ; in (0,1) for each i = 1,...,n and include i in B¢ if
p; < nb/n. Then choose z* by setting those components in B¢ randomly to +1 or —1,
and selecting the remaining components by randomly generating z; in (—1,1).

Generate y* as follows. If ¢ € B, set y7 = 0. Otherwise randomly generate p; in
(—1,1) and v; in (0, 1) and set

(27) y* = sign(p;) x 10~¥vymag,

Then, by setting b = y* — Az*, we have a problem with the desired characteristics.

5.2. Numerical results. In this section, we examine the numerical behavior of our
algorithm. Our implementation is in Pro-Matlab® and all experiments were performed
using a collection of Sun Sparcstations.

Our implemention follows the algorithm described in §2. We use a single stopping
cziﬁrion based on the change in objective function value: the algorithm is terminated at
y~thif

(28) If@**Y) = f(y*)| < tol - (1 +|f(*))).

We set tol = 10715 for all the experiments except for the “low-precision” results where
we use tol = 1075,

As our starting point, we choose the origin, i.e., z° = 0. Empirically, we determine
that ¢; = 1073 and ¢, = 0.90 are reasonable choices of these parameters and we use
them in our tests.

To capture the behavior of the algorithm, we vary each of the problem parameters,
in turn, while keeping the others fixed. For the results quoted in the first six tables, we
fix n = 100, restrict lcnd to the values 0, 3, 6, 9, and 12, and assign to nb the values 10,
50, and 90. We restrict ymag to be 1, 3, 6, 9, or 12, where the magnitude of the nonzero
components of y is about 107¥™2&, Therefore, the test problems become increasingly
near-degenerate as ymag increases.

First, in order to compare the results of [8] we consider problems run to low-
accuracy; i.e., tol = 1078, We consider 10 problems for each set of problem param-
eters; therefore, Tables 1-3 represent a total of 750 test problems. We report the aver-
age, maximum, and minimum number of iterations required to achieve the convergence
criterion in (28).

The iteration averages in Tables 1-3 can be compared to the results given in [8] in
which problems with identical characteristics (though not identical problems) were gen-
erated to test the feasible-point algorithm proposed in [8]. The stopping criteria used in
both cases are comparable, as is the cost of an iteration, since in both algorithms the cost
of an iteration is dominated by the solution of linear systems with identical structures.
Inspection reveals that our proposed algorithm requires fewer average iterations in 71
out of 75 cases with an average differential of about 3; therefore, we feel confident in
concluding that our method is at least competitive with [8] in the low-accuracy setting.
(This comes with the caveat that while the method proposed in [8] maintains feasibility,
our new method is only near-feasible on termination. However, the simple strategy of
setting all infeasible variables to their nearest bounds upon termination is possible: on
our test set this technique did not significantly increase the function value in any case.)

5Qur results involving sparse matrices were obtained using an experimental version of Matlab [7] in which
sparse matrices can be easily manipulated.
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TABLE 1
Iterations for nb = 10 (low accuracy, tol = 1078).

ymag
1 3 6 9 12
lend | avg | min | max | avg | min | max | avg | min | max | avg min | max | avg | min | max
0| 10 o 11115 11| 12115 11| 12| 12| 11| 13]119] 11| 13
31106 o 12107 10| 12]11.7] 11| 13|116| 11| 12|119| 10| 13
6] 99 o 11112 10| 13[11.8] 11| 13[114] 10| 12}118] 11| 13
91 9.7 9| 10103 9 12109 10| 12|11.2| 11| 12]116| 10| 12
12 93 8| 11| 9.9 9| 13]10.6 9| 14]11.6 9| 12| 11| 10| 12
TABLE 2
Iterations for nb = 50 (low accuracy, tol = 1078).
ymag
1 3 6 9 12
lend | avg | min | max | avg | min | max | avg | min | max | avg min | max | avg | min | max
0] 9.6 91 11/107| 10 11]{108| 10| 12}108| 10| 12|(10.8]| 10| 12
3194 8| 10{106| 10 13108 10| 12|114| 11| 12]|115] 10| 15
6| 8.8 8 9110.1 9 117109 10 12{111]| 10| 12|115( 10| 16
9|83 7 91 9.7 9 11(114] 10| 15{11.1| 10| 13104 10| 11
12 | 8.1 7 9| 94 9 10 | 10.2 9] 11]102 9| 111101 9] 12
TABLE 3
Iterations for nb = 90 (low accuracy, tol = 10~8).
ymag
1 3 6 9 12
lend | avg | min | max | avg | min | max | avg | min | max | avg | min | max | avg min | max
0] 83 7 9| 9.2 8 10| 88 8| 10| 88 8 9] 84 8 9
3180 7 9] 9.8 9] 11]10.5 8| 161 9.7 8| 11|95 91 10
6] 8.1 7 91123 8 23 110.2 9| 13197 9] 11§97 91 11
91172 6 81102 8 15| 10.6 9] 16| 93 8| 10 9.8 8| 15
121 17 6 8| 99 8 18| 9.8 8] 14197 9| 10} 9.2 8| 11

Due to the second-order nature of our algorithm it is usually possible to obtain sig-
nificantly greater accuracy at reasonable cost. Our next experiments, reported in Tables
4-6, involve exactly the same test problems as above, except that now tol = 1015
again, condition (28) is our sole stopping criterion.

In most cases the step from low accuracy (tol = 10~8) to high accuracy (tol =
10~15) involves only a modest increase in effort. The better-conditioned problems re-
quire one to two extra iterations. As lcnd and ymag increase, the number of extra it-
erations increases to about four or five, typically. The maximum number of iterations
required by any problem, out of 750, is 41; the worst average is 20.4. Most of the prob-
lems require 17 or fewer iterations.

In our test set the accuracy achieved in the objective function value, ¢.(Z), where
7 indicates the computed solution, is always acceptable. Specifically, out of 750 test
problems the following bound is achieved:

qdz (a_:) — opt

(29) max opt

<1070,
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TABLE 4
Tterations for nb = 10 (high accuracy, tol = 10~15),

ymag
1 3 6 9 12
lend | avg | min | max | avg [ min | max | avg | min | max | avg | min | max | avg | min | max
of114] 11| 12]135] 13 151157 14| 18172 16| 18|16.1 | 15 17
31126 11| 15[125] 12 141152 13| 18| 16| 14| 18164 | 14| 18
61129 11| 15(13.7| 12 16155 13| 19|166| 15| 21(16.8| 14| 18
91135 13| 15|13.6| 11 16143 | 11| 16|158| 14| 20(165| 14| 17
12124 11| 15]132| 11 151137 11| 17|173] 14| 28154 12| 18
TABLE 5
Tterations for nb = 50 (high accuracy, tol = 10715),
ymag
1 3 6 9 12

lend | avg | min | max | avg | min | max | avg | min | max | avg | min | max | avg | min | max

0[108| 10| 12]13.7] 13 151159 15y 171163 | 15| 17[161] 15| 17
3(11.1| 10] 12] 13| 12 151156 | 14| 17|165| 15| 18{167| 15| 19
6119 10| 14]125( 11 151152| 14| 16| 16| 15| 18|165| 14| 22

9125 10| 157131 12 151157 14| 19117.0| 14| 21|158| 14| 17
12123 11| 13]121] 11 141143 13| 17|156| 14| 17]162| 13| 20

TABLE 6
Tterations for nb = 90 (high accuracy, tol = 10~1%).

ymag
1 3 6 9 12
lend | avg | min | max | avg [ min [ max | avg | min | max | avg | min | max | avg | min | max

0101 9 131122 11 141141 | 13| 15| 14| 13| 15({139] 13| 15
31 92 9( 10/129] 11 171204 14| 41)166| 14| 22]159| 15| 22
6|10.4 9| 12148 ] 11 2501175 13| 31(16.8| 15| 21|162| 14| 21

91103 9] 117136 11 191156 13| 22167 14| 22| 16| 13| 21
12112 10| 13| 13| 10 20156 13| 23[193]| 15| 32|163| 12| 24

where opt is the true optimal value, opt # 0. Moreover, in the vast majority of cases
we achieve

qdz (i ) — opt
opt
which is essentially full accuracy in the objective function value. Of course, the accuracy

achieved in z varies depending on the conditioning of the problem. The worst feasibility
result, over all 750 test cases, is

(30) max <1071,

max{max (|Z;| — 1,0)} = 107°.

In all cases, setting infeasible variables to their nearest bound upon termination changed
the objective function value only mildly; our worst-case bound (29) is maintained after
this correction as well as the observation that (30) holds in the vast majority of the cases.

In order to test the sensitivity of our algorithm to problem size, we consider larger
test cases, involving sparse matrices, and present our results in Tables 7-11. Thanks to
Cleve Moler of The Mathworks, Inc., we were able to perform our experiments using
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an experimental version of Matlab, in which sparse matrices are easily generated and
manipulated [7].

In our sparse experiments we strive for high accuracy, i.e., tol = 107!%, and we
hold the percentage of bound constraints, nb, fixed at 50 %. The matrices are generated
using a Matlab subroutine SPRAND supplied to us by Rob Schreiber. Given the density
of the matrix (dens) as well as lcnd and the base-10 exponent of the condition number of
the matrix, SPRAND produces a sparse symmetric positive definite matrix with the given
condition number and a random sparsity pattern with number of nonzeros approximately
equal to dens xn?. In our tests dens = 2 and lend = 4,8. Our test suite consists of 5
test problems for each setting of the problem parameters, yielding a total of 100 test
problems.

TABLE 7
Sparse problems, iterations for n = 100.

ymag

lend | avg | min | max | avg | min | max

4116 10| 13154} 13 18
81124 12| 13| 15| 13 20

TABLE 8
Sparse problems, iterations for n = 200.

ymag

lend | avg | min | max | avg | min | max

41124 11| 14214 17 31
81124 12| 13]212| 14 30

TABLE 9
Sparse problems, iterations for n = 500.

ymag

lend | avg | min | max | avg | min | max

144 13| 17214 16 29
8| 14| 13|/ 16(29.6| 18 45

>

TaBLE 10
Sparse problems, iterations for n = 1000.

ymag

lend | avg | min | max | avg | min | max

148 14| 16|21.8( 19 24
81152 17| 131|254 22 31

=~
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TABLE 11
Sparse problems, iterations for n = 2000.

ymag

lend | avg | min | max | avg | min | max

4(152] 14| 16286 23 33
8162 | 14| 18]334| 23 47

The average number of iterations grows rather mildly with n. For example, in the
moderately ill conditioned setting lcnd = 4, ymag = 5, the average number of iterations
goes from 15.4(n = 100) to 21.4(n = 500) to 28.6(n = 2000).

The accuracy achieved on this set of large sparse problems is quite good. In partic-
ular, essentially full accuracy in the objective function value is achieved in every case:

(31) max

4:(T) — opt <1071,
o

pt

where Z is the computed solution and opt is the true optimal value; feasibility was also
respectable:

max {max (|Z;| — 1,0)} = 10~°.

6. Conclusions. This paper presents a new algorithm for solving box-constrained
convex quadratic programs. The method shows promise: beyond global and superlinear
convergence results, the numerical experiments indicate practical potential. Specifically,
high accuracy can usually be achieved with a modest number of iterations.

The real promise of this approach is in the large-scale setting where questions of
exploiting sparsity or parallelism can be centered on the Cholesky factorization alone.
Work outside of the factorization/solve is bounded by nnz(A) + n - logn, where nnz(A)
is the number of nonzeros of A. This work is usually negligible compared to the factor-
ization.The Cholesky factorization is a standard linear algebra task in both the sparse
and parallel settings; therefore, we need only “plug into” a standard routine to achieve
efficiency.

Further research needs to be done. For example, we believe the degeneracy assump-
tion can be greatly relaxed without weakening the theoretical properties; the question
of quadratic convergence should be resolved (probably in the affirmative); more work is
needed on the handling of different bounds, including one-sided bounds.

Despite the promising results of this paper with respect to our new algorithm, the
most important contribution may lie elsewhere. Specifically, the ideas underpinning this
algorithm are new (or are used in a novel way) and their full domain of applicability is
unknown. To summarize, the basic underlying ideas are: the transformation of a con-
strained problem to a piecewise differentiable problem,® the notion of a Newton process
for this nondifferentiable function, the definition of a descent direction in combination
with an efficient line search procedure. We expect that many more problems can be ap-
proached in this way. For example, the successful I; algorithm in [7] also follows these
lines.

6The lack of penalty parameter (or, equivalently, penalty parameter equal to unity) is due to two things.
First, it is not hard to see that minimization of a quadratic function subject to finite box-constraints on every
variable is equivalent to minimization of an unconstrained piecewise quadratic function with an easily com-
puted penalty parameter. Second, the homogeneous unit bounds in (1) yield a unit penalty parameter.
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